If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4=z^2
We move all terms to the left:
4-(z^2)=0
We add all the numbers together, and all the variables
-1z^2+4=0
a = -1; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-1)·4
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4}{2*-1}=\frac{-4}{-2} =+2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4}{2*-1}=\frac{4}{-2} =-2 $
| 2r+8-r=-7-2r | | 9x-91=180 | | 9-6k=-5k | | 212=-v+160 | | 3(x-1)(5x+4)=0 | | 2s+4=5(−4−2s)2s+4=5(−4−2s) | | −60x+32=−60x+60 | | 6d=3d−3 | | x-3.56=1.6 | | 4x/7=4.2 | | (x+12)+(2x-36)+(1/3+44)=180 | | -8(9-2x)=12(-4x+6) | | 123+2h=901 | | 1.6m-0.7=0.9 | | -4n=10-2n | | -7v+5(v+5)=39 | | -x+170=123 | | 18p-51=3(6p-5) | | -312=6(7x+4) | | -8(9-2x)=12(-3x+6) | | -7a+5=103 | | 198=140-y | | n-4=(5n+1)/(2) | | 3n-8=128 | | 2/h+9=13 | | 4/p-2=1 | | 3+7k=-3+5k | | -9+6t=7t | | K^3-6k^2+32=0 | | 25a=15 | | 13=3/r+11 | | 2.1m-2.1=4.2 |